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Introduction

In 1990, Carver Mead observed that neuromorphic compute architectures are 
often many orders of magnitude more effective than conventional systems. 
Indeed, the semiconductor industry has long struggled to bypass Von Neumann 
bottlenecks, recalibrate Moore’s Law, and overcome the breakdown of 
Dennard Scaling. 

The impact and acceleration of these trends recently prompted Gartner analysts 
to warn traditional computing technologies will hit a “digital wall” in 2025 and 
force a shift to new paradigms such as neuromorphic computing. To be sure, 
advanced edge AI applications are fast approaching the limits of conventional 
silicon and cloud-centric learning models. With enormous amounts of targeted 
compute power available in cloud data centers, AI training and inference models 
leveraging GPU and TPU hardware accelerators continue to increase in both size 
and sophistication. 

This reflects a larger industry trend which has seen compute power increase 
over the past decade as networks grow larger and more complex. In parallel, 
cloud-based streaming video AI solutions are demanding ever-more internet 
bandwidth. Clearly, these trends cannot continue without severe consequences 
including unmanageable latency, rapidly expanding carbon footprints, and 
security exploits that could potentially intercept and target raw data sent to 
cloud data centers. 

In this Q&A with BrainChip Co-Founder and Chief Technology Officer Peter van 
der Made, we discuss the evolution of neuromorphic computing, talk about 
the limitations of current compute models for edge AI, and explore how 
neuromorphic silicon is driving a more intelligent and sustainable future. 

https://authors.library.caltech.edu/53090/1/00058356.pdf
https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-predictions-for-2021-and-beyond
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Chapter 1:  
Overcoming analog limitations with 
digital engineering

Q: Peter, as a silicon pioneer, you’ve accomplished an incredible amount over 
the years, such as inventing a computer immune system, developing advanced 
graphics technology, and designing neuromorphic processors. You’ve also written 
a book titled “Higher Intelligence: How to Create a Functional Artificial Brain,” 
which examines how the human brain functions – not as a control center – but 
as a learning, interacting machine. 

With that in mind, can you tell us what inspired you to pick up where Carver 
Mead left off, move away from a Von Neumann compute model, and build an 
exciting neuromorphic future?

Peter: I was troubled by the huge amount of circuitry in CPUs and GPUs that is 
required for AI processing. All these power-hungry processors are doing very little 
compared to what the human brain accomplishes with 86 billion neural cells and 
over 100 trillion synaptic connections. The brain is faster than a giant supercomputer 
and runs on the energy equivalent of just 20 watts. 

However, before designing a viable neuromorphic processor, I had to overcome 
some basic limitations. This is because Carver Mead’s initial research was based 
on analog neurons to mimic human neurons. Like their biological counterparts, 
analog neurons only function properly within a very limited and stable 
temperature range. As well, data stored on analog neurons cannot be easily 
copied or used by other chips. 

That’s why I started by building a very comprehensible model of the behavior 
of a brain cell using digital circuits. I patented that design in 2008. Why use 
software on a computer to simulate a processor, a neuron cell, which is totally 
different from a computer? It makes more sense to build a computer that works 
like the processors in the brain. Hence the neuromorphic – which means “like the 
brain” – design. A digital model is far more stable than an analog circuit. We’ve 
seen the evolution from analog to digital in other fields, like mobile phones. 

Although a giant leap forward, I also needed to efficiently scale neuron count 
to develop a commercially viable solution. Early FPGA-based prototypes first 
contained seven digital neurons, then 64, and the next iteration increased 
this number to 256. To get over a million neurons on a single chip, I had to 
simplify the neuron model without compromising its computational power. So, I 
eliminated extraneous biological-inspired elements such as neurotransmitters 
and exponential decays while preserving the neuromorphic functions that are 
essential in its computational function. 

https://patents.justia.com/patent/7854004
https://worldwide.espacenet.com/patent/search/family/019847500/publication/NL8600233A?q=pn%3DNL8600233A
https://worldwide.espacenet.com/patent/search/family/019847500/publication/NL8600233A?q=pn%3DNL8600233A
https://www.amazon.com/Higher-Intelligence-Create-Functional-Artificial/dp/1922204153
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Q: Adopting a biologically inspired, digitally engineered neuromorphic model was 
visionary, because it ultimately enabled you and the BrainChip team to effectively 
design, prototype, and launch AKIDA. Since you started your experimental circuits 
and design well before others in the semiconductor industry, can you highlight 
some of the major differences between BrainChip’s AKIDA, IBM’s TrueNorth, and 
Intel’s Loihi?

Peter: We designed a learning function into our chip right from the start because 
learning is an essential function in AI. We also implemented on-chip convolution, 
a method of using the same neuron multiple times in different locations. 
We designed the AKIDA chip to be easy to configure so that engineers, not 
neuroscientists, can deploy it. The on-chip learning function and on-chip event-
based convolution make AKIDA a very compact, low-power solution for edge AI 
use cases.

IBM’s TrueNorth wasn’t designed to support on-chip convolution, or on-chip 
learning. It is a static design consisting of ‘corelets’ that are programmed using 
a Fortran-like language to connect corelets together to create functions. In 
contrast, AKIDA neurons are arranged in layers and configured with MetaTF 
which supports Python and TensorFlow. 

Although system designers can program their own learning methods, Intel’s Loihi 
processor doesn’t have the same on-chip learning and convolutional framework 
as AKIDA. In addition, Loihi’s architecture seems to be targeted at neuroscientists 
rather than engineers, as the former are generally more familiar with the complex 
process of connecting individual neurons together (rather than layers). 

I’d like to briefly elaborate on how BrainChip’s MetaTF is making it easy for 
engineers to create, train, and test neural networks on AKIDA. Firstly, we designed 
MetaTF to automatically convert TensorFlow models and leverage Python, along 
with associated tools and libraries including Jupyter notebooks and NumPy. 
Secondly, with MetaTF, the data exchanged between layers is not the usual dense 
multidimensional arrays, but rather sets of spatially organized events modeled as 
sparse multidimensional arrays. 

Chapter 2:  
Designing the world’s first commercial 
neuromorphic processor
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Q: The benefits of on-chip learning and on-chip convolution were recently 
highlighted by two olfactory (odor classification) applications. One was 
developed for AKIDA, and the other for Loihi. The application developed on 
Loihi required 80 chips, while BrainChip’s olfactory application used a fraction of 
one chip, identified odors with high accuracy (97%), and consumed significantly 
less power. Although both AKIDA and Loihi are neuromorphic processors, there 
are major architectural differences between them. Can you highlight these 
differences?

Peter: By only processing meaningful data that represents relevant data, AKIDA 
efficiently performs up to trillions of operations per second within a minimal 
power envelope. 

Take, for example, a security camera pointed at a warehouse scene. Most of 
the time nothing is happening, the scene is static. Conventional AI computes 
every pixel all the time, just to see that nothing has changed. Event-based 
neuromorphic processing is far more efficient. The scene is static and does not 
generate any events. Events are generated once someone walks into the scene. 
At that point, AKIDA processes only the relevant events to detect whether it is a 
person or an insect crawling across the lens.

Another major architectural difference between AKIDA and other neuromorphic 
processors is scalability and configurability. We work closely with customers 
to achieve the most cost-effective solutions by optimizing node configuration 
to balance performance and efficiency. That’s why AKIDA scales down to two 
nodes for ultra-low power applications - and scales up to 256 nodes for complex 
use cases. Every node consists of four neural processing Units (NPUs), each with 
scalable and configurable SRAM. Within each node, the NPUs can be configured 
as either convolutional or fully connected. 

BrainChip’s IP fabric can also be placed either in a parallelized manner that 
would be ideal for ultimate performance, or space-optimized to reduce silicon 
utilization and further reduce power consumption. This means entire neural 
networks can be placed into the fabric, removing the need to swap weights in 
and out of DRAM. This model significantly reduces power consumption while 
increasing throughput. Additionally, users can modify clock frequency to further 
optimize performance and power consumption. 
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Q: With AKIDA’s neuromorphic architecture, BrainChip is enabling the 
semiconductor industry to untether edge AI from cloud data centers. This is quite 
timely, because conventional AI silicon and cloud-centric inference models aren’t 
performing efficiently at the edge, even as the number of edge-enabled IoT 
devices are expected to hit 7.8 billion by 2030. Can you elaborate on the notion 
of untethering?

Peter: Increasing internet congestion is increasing latency as more edge devices 
upload their data. The power consumption and heat production of massive 
parallel Von Neumann type processors is also increasing linearly with the 
computing power required by AI applications. That’s why untethering edge AI from 
the cloud with AKIDA is a critical step to designing faster and more environmentally 
sustainable endpoints. 

Chapter 3:  
Untethering edge AI from cloud data centers

Differentiating intelligent endpoint requirements

Data Center
Server Edge Endpoint

	Power intensive
	High latency
	Huge memory requirement
	Big data inference
	High bandwidth
	Privacy concerns

	Power efficient
	Ultra low latency
	Small memory requirement
	Small data inference, one-shot learning
	Low bandwidth
	On-chip, in-device
	Privacy enabling

The Edge

Data centers hosting cloud-based workloads emitted an estimated 600 
megatons of greenhouse gases in 2020 alone, more than the consumption of the 
entire United Kingdom (GB). Unless something radically changes, data centers 
will consume over 20% of the world’s energy by 2050! With its on-chip learning 
and low power, high throughput inference capabilities, we believe AKIDA can help 
reduce data center carbon emissions by 98% by decentralizing AI processing. 
Intelligently analyzing data on-chip will help put an end to the yottabytes of raw, 
unprocessed, and mostly irrelevant data sent to cloud data centers by millions of 
endpoints, solving the impeding internet congestion problem. 

Using image recognition as an example, we can quantify the power savings 
enabled by AKIDA’s on-chip capabilities compared to a GPU in today’s data 
center. Specifically, AKIDA can efficiently analyze and categorize the 1.2 million 
images of the ImageNet dataset with a minimal power budget of 300 milliwatts. 
A GPU performing this task consumes up to 300 watts! This huge difference 
illustrates why simply scaling down conventional AI hardware to meet the unique 
requirements of edge endpoints is insufficient. 

https://brainchip.com/edge-ai-the-cloud-free-future-is-here/
https://transformainsights.com/news/edge-computing-rapid-growth-iot
https://www.nature.com/articles/d41586-018-06610-y
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Other “low power” edge AI solutions such as DSP-based chips cannot match 
the performance of the AKIDA chip - and the scaled-down versions of GPU 
technology suffer from significantly higher power consumption. The AKIDA design 
is very flexible because the neural fabric can be reconfigured within milliseconds 
for many different network architectures. 

Q: Gartner’s Bob Gill recently described a heterogenous approach to the 
edge. Dubbed “edge-in,” this model would potentially see companies build 
edge applications optimized for low-latency and low-bandwidth autonomous 
connections - and tap the cloud for other tasks. Do you agree with this 
assessment?

Peter: I believe data centers will take on more of a cloud-based warehousing 
role, storing massive amounts of information that can be leveraged over time 
for different purposes. Distributed processing in edge AI devices using AKIDA 
will only need to upload meta-data, not complete video streams. Data can be 
analyzed on edge devices for trends before the results are shared or uploaded. 
This will reduce the pressure to build ever larger, more power-hungry data 
centers in the future. 

What we are seeing is a repeat of what happened in the 1980s when IBM 
launched its first PC. People bought computers that processed data locally and 
not on a remote mainframe computer. Distributed edge AI - not data centers - will 
drive a new, efficient, and faster model of distributed computing optimized to meet 
the requirements of intelligent endpoints. 

Computational demands are increasing rapidly (Nature Portfolio, Brain-inspired computing 
needs a master plan)
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https://www.nature.com/articles/s41586-021-04362-w/figures/1
https://www.nature.com/articles/s41586-021-04362-w/figures/1
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Q: BrainChip customers are already deploying smarter endpoints with 
independent learning and inference capabilities, faster response times, and a 
lower power budget. Can you give us some real-world examples of how AKIDA is 
revolutionizing AI inference at the edge? 

Peter: Automotive is a good place to start. Using AKIDA-powered sensors and 
accelerators, automotive companies can now design lighter, faster, and more 
energy efficient in-cabin systems that enable advanced driver verification and 
customization, sophisticated voice control technology, and next-level gaze 
estimation and emotion classification capabilities.

Chapter 4:  
Revolutionizing AI inference at the edge

In addition to redefining the automotive in-cabin experience, AKIDA is helping 
enable new computer vision and LiDAR systems to detect vehicles, pedestrians, 
bicyclists, street signs, and objects with incredibly high levels of precision. We’re 
looking forward to seeing how these fast and energy efficient ADAS systems help 
automotive companies accelerate the rollout of increasingly advanced assisted 
driving capabilities. 

In the future, we’d also like to power self-driving cars and trucks. But we don’t 
want to program these vehicles. To achieve true autonomy, cars and trucks must 
independently learn how to drive in different environmental and topographical 
conditions such as icy mountain roads with limited visibility, crowded streets, and 
fast-moving highways. 

Enabling advanced LiDAR with AKIDA

https://brainchip.com/markets/#_tab-35071a87949524bdf26
https://brainchip.com/brainchip-mercedes-neuromorphic-ev-concept-car/
https://brainchip.com/designing-smarter-and-safer-cars-with-essential-ai-2/
https://brainchip.com/designing-smarter-and-safer-cars-with-essential-ai-2/
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With AKIDA, these driving skills can be easily copied and adaptable by millions of 
self-driving vehicles. This is a particularly important point. AKIDA driving updates 
will be based on real-world knowledge and skills other cars have learned on the 
road. We want to avoid boilerplate firmware updates pushed out by engineering 
teams sitting in cubes. A programmed car lacking advanced learning and 
inferential capabilities can’t anticipate, understand, or react to new driving 
scenarios. That’s why BrainChip’s AKIDA focuses on efficiently learning, inferring, 
and adapting new skills. 

Q: Aside from automotive, what are some other multimodal edge use cases 
AKIDA enables? 

Peter: Smart homes, automated factories and warehouses, vibration monitoring 
and analysis of industrial equipment, as well as advanced speech and facial 
recognition applications. AKIDA is also accelerating the design of robots using 
sophisticated sensors to see, hear, smell, touch, and even taste.

https://brainchip.com/markets/#_tab-8c79a54612f885943eb
https://brainchip.com/markets/#tab-215dc84f4b394a72de8
https://www.youtube.com/watch?v=IRD2l07op0g
https://www.youtube.com/watch?v=IRD2l07op0g
https://www.youtube.com/watch?v=kofd2-1m58E
https://www.youtube.com/watch?v=kofd2-1m58E
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Q: In addition to identifying, extracting, analyzing, and inferring only the most 
meaningful data, AKIDA supports on-chip incremental and one-shot learning. How 
will these learning models help shape the future of neuromorphic computing and 
enable the design of more intelligent machines at the edge? As well, how does 
on-chip incremental and one-shot learning differ from deep learning convolutional 
neural networks (CNNs)?

Peter: On-chip incremental and one-shot learning models excel at the edge, 
allowing cognitive systems to be configured in the field, within seconds, to 
recognize the owner’s face or voice. Deep learning CNNs are mostly static, that 
is, they are trained once at the lab and cannot learn anything new thereafter. 
Put simply, conventional AI silicon and cloud-based learning models have not 
yet learned how to learn. They are trained, using a cumbersome successive 
approximation method.

CNNs running on GPUs can be thought of as a 1950s model paired with a 2011 
learning method. These models need to be exposed to millions of images to 
recognize a cat, a person, or any other object in the real world. The human brain, 
and AKIDA, learn by different principles. Incremental learning works by exposing 
AKIDA to a single image, which is then recognized anywhere. We have highlighted 
this capability in one of our demos where we show the AKIDA chip can accurately 
identify and classify a toy elephant and give it the label “elephant.” AKIDA then 
recognizes elephants in photographs or videos in the wild.  

With regards to the future of neuromorphic computing, I’d like to emphasize that 
while Hollywood has made a lot of people scared of AI, the human brain has a 
total of 86 billion neurons, with 69 billion neurons located in the cerebellum alone. 
Current AI hardware and learning models are nowhere near achieving human 
levels of intelligence. In fact, standard GPU cause-and-effect systems only have 
the approximate intelligence of a frog - as they are limited to repeating the same 
action for every stimulus. That is not intelligence. 

It is important to note that Von Neumann-based systems were already beating 
humans at chess back in the 1960s. Recently, a trained Google AI called AlphaGo 
beat human champions in a game of Go. But that is all that those AI systems can 
do. They cannot follow instructions to complete any other task, even a simple task, 
as a human child can. 

Chapter 5:  
Inferring the future of neuromorphic computing

https://chessentials.com/history-of-chess-computer-engines/
https://chessentials.com/history-of-chess-computer-engines/
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Even the most advanced silicon-based neuromorphic systems lack adaptability, 
intelligence, and creativity, a combination that makes people unique. Humans can 
adapt to living in cities, jungles, frozen tundra, and even deserts. We also create 
new synapses - the storage areas of the brain - as we assimilate new information. 
That’s why I strongly disagree with people who say “Oh, yes. We can build systems 
that are smarter than humans.” No, we can’t. Not with our emotional and creative 
intelligence. And certainly not by 2040. 

To increase the capabilities of AI, we must break away from the traditional layered 
architecture of neural networks. The brain is a complex system consisting of many 
modules, each with unique architecture and function. At the BrainChip Research 
Institute we are studying this complex architecture of the brain and building 
models to construct future AKIDA systems that we expect will mimic at least some 
aspects of human intelligence.

The simple layered structure of today’s AI networks is limiting the ability of AI to 
progress beyond basic classification. BrainChip’s advanced research is pushing 
the boundaries of artificial intelligence by researching neuromorphic models of 
the human cortex, the seat of intelligence. The frontal lobes of the cortex are 
significantly associated with intelligence. The aim of our research is to construct 
in hardware a temporal neuromorphic cortical network that is as modular and 
flexible as the human brain. 
 
Advanced artificial intelligence systems that result from this research must 
be capable of recognizing partially obscured objects, anticipating expected 
outcomes, and recognizing behavior. This is the next generation of neuromorphic 
computing, and I hope to continue contributing to the research and science that 
will make this possible. 
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Always at the forefront of innovation, Peter invented a computer immune system 
and founded vCIS Technology where he served as CTO and Chief Scientist when it 
was acquired by Internet Security Systems and subsequently IBM. He also founded 
PolyGraphic Systems and designed a high resolution, high-speed color Graphics 
Accelerator board and chip for IBM PC graphics. 

At BrainChip, Peter designed the first generations of digital neuromorphic devices 
on which the AKIDA chip is based and published a book, Higher Intelligence, which 
describes the architecture of the brain from a computer science perspective. 
Peter is actively involved in the development of new AKIDA IP and continues his 
research in advanced neuromorphic architectures based on the human neocortex, 
the cerebellum, and its interactions with the hippocampus. 

Peter van der Made
Founder and Chief Technology Officer at BrainChip

https://patents.justia.com/patent/7854004
https://www.amazon.com/Higher-Intelligence-Create-Functional-Artificial/dp/1922204153

