BRN Discussion Ongoing

IloveLamp

Top 20
Yeah true but remember we have just been in the hackathon with Infineon and Sony for the pedestrian detection.

Would be great if Infineon had some kind of revelation with us.

I know Nikunj speaks about how sensors from Sony or Infineon can be used with Akida in his TinyML video on the hackathon.





Ooh i forgot about that! Nice one fm


1000006581.gif
 
  • Like
  • Haha
  • Fire
Reactions: 14 users

TechGirl

Founding Member

WHAT IS BRAINCHIP USED FOR?​

What is Brainchip used for?

Understanding the Applications of Brainchip: Revolutionizing Artificial Intelligence​

In recent years, the field of artificial intelligence (AI) has witnessed remarkable advancements, pushing the boundaries of what was once thought possible. One such groundbreaking technology that has emerged is Brainchip, a neuromorphic computing platform that mimics the functioning of the human brain. With its unique architecture and capabilities, Brainchip is being utilized in a multitude of applications, revolutionizing various industries.
At its core, Brainchip is designed to process vast amounts of data in real-time, enabling rapid decision-making and pattern recognition. This innovative technology utilizes spiking neural networks (SNNs), which are inspired by the way neurons communicate in the human brain. By leveraging SNNs, Brainchip can efficiently process and analyze complex data sets, making it ideal for applications that require high-speed and low-power processing.

One of the primary applications of Brainchip lies in the field of surveillance and security. Traditional video surveillance systems often struggle to analyze and interpret large volumes of video footage in real-time. However, Brainchip’s advanced capabilities allow it to process video streams in real-time, detecting and identifying objects, faces, and even abnormal behavior. This technology has the potential to revolutionize the way security systems operate, enhancing public safety and reducing response times.
Another significant application of Brainchip is in the field of autonomous vehicles. Self-driving cars rely heavily on AI algorithms to navigate and make split-second decisions. Brainchip’s ability to process data in real-time and recognize patterns makes it an ideal solution for autonomous vehicles. By leveraging Brainchip’s capabilities, self-driving cars can analyze sensor data, detect obstacles, and make informed decisions, ultimately improving safety and efficiency on the roads.
Furthermore, Brainchip is also being utilized in the healthcare industry. Medical professionals are constantly faced with vast amounts of patient data that need to be analyzed accurately and efficiently. Brainchip’s high-speed processing and pattern recognition capabilities enable healthcare providers to quickly analyze medical images, detect anomalies, and diagnose diseases. This technology has the potential to revolutionize medical diagnostics, leading to faster and more accurate diagnoses, ultimately saving lives.
It is important to note that Brainchip is not limited to these applications alone. Its versatility and adaptability make it suitable for a wide range of industries, including robotics, industrial automation, and even gaming. As the technology continues to evolve, we can expect to see Brainchip being integrated into various sectors, transforming the way we live and work.

In conclusion, Brainchip is a revolutionary technology that is transforming the field of artificial intelligence. With its ability to process vast amounts of data in real-time and recognize patterns, Brainchip is being utilized in various applications, including surveillance and security, autonomous vehicles, healthcare, and more. As this technology continues to advance, it holds the potential to reshape industries and improve our daily lives in ways we never thought possible.
Sources:
– “Brainchip: The World’s First Neuromorphic Computing Platform” – Brainchip Holdings Ltd.
– “Brainchip Technology: A New Era of AI” – Analytics Insight
– “How Brainchip Works: The Future of AI” – TechRadar
 
  • Like
  • Love
  • Fire
Reactions: 90 users
IBM came out of stealth mode today with NorthPole, an extension of TrueNorth…



19 Oct 2023
News
6 minute read

A new chip architecture points to faster, more energy-efficient AI​

A new chip prototype from IBM Research’s lab in California, long in the making, has the potential to upend how and where AI is used efficiently.

image

A new chip prototype from IBM Research’s lab in California, long in the making, has the potential to upend how and where AI is used efficiently.

We’re in the midst of a Cambrian explosion in AI. Over the last decade, AI has gone from theory and small tests to enterprise-scale use cases. But the hardware used to run AI systems, although increasingly powerful, was not designed with today’s AI in mind. As AI systems scale, the costs skyrocket. And Moore’s Law, the theory that the density of circuits in processors would double each year, has slowed.

But new research out of IBM Research’s lab in Almaden, California, nearly two decades in the making, has the potential to drastically shift how we can efficiently scale up powerful AI hardware systems.

Since the birth of the semiconductor industry, computer chips have primarily followed the same basic structure, where the processing units and the memory storing the information to be processed are stored discretely. While this structure has allowed for simpler designs that have been able to scale well over the decades, it’s created what’s called the von Neumann bottleneck, where it takes time and energy to continually shuffle data back and forth between memory, processing, and any other devices within a chip. The work by IBM Research’s Dharmendra Modha and his colleagues aims to change this, taking inspiration from how the brain computes. “It forges a completely different path from the von Neumann architecture,” according to Modha.

Over the last eight years, Modha has been working on a new type of digital AI chip for neural inference, which he calls NorthPole. It’s an extension of TrueNorth, the last brain-inspired chip that Modha worked on prior to 2014. In tests on the popular ResNet-50 image recognition and YOLOv4 object detection models, the new prototype device has demonstrated higher energy efficiency, higher space efficiency, and lower latency than any other chip currently on the market, and is roughly 4,000 times faster than TrueNorth.

The first promising set of results from NorthPole chips were published today in Science. NorthPole is a breakthrough in chip architecture that delivers massive improvements in energy, space, and time efficiencies, according to Modha.
Using the ResNet-50 model as a benchmark, NorthPole is considerably more efficient than common 12-nm GPUs and 14-nm CPUs. (NorthPole itself is built on 12 nm node processing technology.) In both cases, NorthPole is 25 times more energy efficient, when it comes to the number of frames interpreted per joule of power required. NorthPole also outperformed in latency, as well as space required to compute, in terms of frames interpreted per second per billion transistors required. According to Modha, on ResNet-50, NorthPole outperforms all major prevalent architectures — even those that use more advanced technology processes, such as a GPU implemented using a 4 nm process.

How does it manage to compute with so much efficiency than existing chips? One of the biggest differences with NorthPole is that all of the memory for the device is on the chip itself, rather than connected separately. Without that von Neumann bottleneck, the chip can carry out AI inferencing considerably faster than other chips already on the market. NorthPole was fabricated with a 12-nm node process, and contains 22 billion transistors in 800 square millimeters. It has 256 cores and can perform 2,048 operations per core per cycle at 8-bit precision, with potential to double and quadruple the number of operations with 4-bit and 2-bit precision, respectively. “It’s an entire network on a chip,” Modha said.

IBM_NP_PCIe-PCB-Rear.png
The NorthPole chip on a PCIe card.

Architecturally, NorthPole blurs the boundary between compute and memory,” Modha said. "At the level of individual cores, NorthPole appears as memory-near-compute and from outside the chip, at the level of input-output, it appears as an active memory.” This makes NorthPole easy to integrate in systems and significantly reduces load on the host machine.

But the biggest advantage of NorthPole is also a constraint: it can only easily pull from the memory it has onboard. All of the speedups that are possible on the chip would be undercut if it had to access information from another place.
Via an approach called scale-out, NorthPole can actually support larger neural networks by breaking them down into smaller sub-networks that fit within NorthPole’s model memory, and connecting these sub-networks together on multiple NorthPole chips. So while there is ample memory on a NorthPole (or collectively on a set of NorthPoles) for many of the models that would be useful for specific applications, this chip is not meant to be a jack of all trades. “We can’t run GPT-4 on this, but we could serve many of the models enterprises need,” Modha said . “And, of course, NorthPole is only for inferencing.”
This efficacy means that the device also doesn’t need bulky liquid-cooling systems to run — fans and heat sinks are more than enough — meaning that it could be deployed in some rather small spaces.


Potential applications for NorthPole​

While research into the NorthPole chip is still ongoing, its structure lends itself to emerging AI use cases, as well as more well-established ones.

In testing, NorthPole team focused primarily on computer vision-related uses, in part because funding for the project came from the U.S. Department of Defense. Some of the primary applications in consideration were detection, image segmentation, and video classification. But it was also tested in other arenas, such as natural language processing (on the encoder-only BERT model) and speech recognition (on the DeepSpeech2 model). The team is currently exploring mapping decoder-only large language models to NorthPole scale-out systems.

When you think of these AI tasks, all sorts of fantastical use cases spring to mind, from autonomous vehicles, to robotics, digital assistants, or spatial computing. Many sorts of edge applications that require massive amounts of data processing in real time could be well-suited for NorthPole. For example, it could potentially be the sort of device that’s needed to move autonomous vehicles from machines that require set maps and routes to operate on a small scale, to ones that can think and react to the rare edge-case situations that make navigating in the real world so challenging even for proficient human drivers. These sorts of edge-cases are the exact sweet spot for future NorthPole applications. NorthPole could enable satellites that monitor agriculture and manage wildlife populations, monitor vehicle and freight for safer and less congested roads, operate robots safely, and detect cyber threats for safer businesses.

What’s next

This is just the start of the work for Modha on NorthPole. The current state of the art for CPUs is 3 nm — and IBM itself is already years into research on 2 nm nodes. That means there’s a handful of generations of chip processing technologies NorthPole could be implemented on, in addition to fundamental architectural innovations, to keep finding efficiency and performance gains.

BIC-Group-Photo_2023-08-10_no-caption.png
Modha, center, with most of the team working on NorthPole.

But for Modha, this is just one important milestone along a continuum that has dominated the last 19 years of his professional career. He’s been working on digital brain-inspired chips throughout that time, knowing that the brain is the most energy-efficient processor we know, and searching for ways to replicate that digitally. TrueNorth was fully inspired by the structures of neurons in the brain — and had as many digital “synapses” in it as the brain of a bee. But sitting on a park bench in 2015 in San Francisco, Modha said he was thinking through his work to date. He had the belief that there was something in marrying the best of traditional processing devices with the structure of processing in the brain, where memory and processing are interspersed throughout the brain. The answer was “brain-inspired computing, with silicon speed,” according to Modha.

Over the next eight years, Modha and his colleagues were single-minded and hermetic in their goal of turning this vision into a reality. Toiling inconspicuously in Almaden, the team didn’t give any lectures or publish any papers on their work, until this year. Each person brought different skills and perspective yet everyone collaborated so that as a whole the team’s contribution was much greater than the sum of the parts. Now, the plan is to show what NorthPole could do, while exploring how to translate the designs into smaller chip production processes and further exploring the architectural possibilities.

This work stemmed from simple ideas — how can we make computers that work like the brain — and after years of fundamental research, has come up with an answer. Something that is really only possible today at a place like IBM Research, where there is the time and space to explore the big questions in computing, and where they can take us. “NorthPole is a faint representation of the brain in the mirror of a silicon wafer,” Modha said.


Here is a 61 page PDF file for the techies…





View attachment 47481

Biblical level praise from Italy

IMG_6779.jpeg


IMG_6778.jpeg

IMG_6777.jpeg




 
  • Like
  • Fire
  • Love
Reactions: 52 users

Mt09

Regular
For me -

Brainchip employee liking Senior designer @microsoft post is positive

Brainchip employee Liking post about intels advances is also positive

I checked out Numentas LinkedIn page they advertise themselves as a SOFTWARE company.

If you read the article posted, they attribute the gains to the numenta software imo

Perhaps Intel is using their software to integrate akida ip and claiming the advantages are from Numenta when actually the advantages will come from our ip?

View attachment 47700

The performance and efficiency advances they're claiming make me highly suspicious

Not the longest of bows to draw imo

Waiting fot the intel / SiFive ip agreement like...

View attachment 47699
 

Attachments

  • IMG_5117.jpeg
    IMG_5117.jpeg
    74.1 KB · Views: 92
  • IMG_5118.jpeg
    IMG_5118.jpeg
    47 KB · Views: 82
  • Haha
  • Like
Reactions: 3 users

IloveLamp

Top 20
Show me how it's done oh great one, or should i take note from all your high quality offerings? Rhetorical question.

How about you contribute something before critisising others that try?

In fact let's revisit my aim in 18 months, my arrows are still in the air for the most part.
 
Last edited:
  • Like
  • Love
  • Fire
Reactions: 23 users
Might be worth a watch but 30 minutes too long for me

 
  • Haha
  • Like
  • Fire
Reactions: 7 users

Diogenese

Top 20
  • Like
  • Love
  • Fire
Reactions: 70 users

Mt09

Regular
Show me how it's done oh great one, or should i take note from all your high quality offerings? Rhetorical question.

How about you contribute something before critisising others that try?

In fact let's revisit my aim in 18 months, my arrows are still in the air for the most part.
Can’t take a joke?
 
  • Like
Reactions: 1 users

IloveLamp

Top 20
  • Haha
  • Like
Reactions: 2 users
Latest GitHub info & updates from early Sept. Lots nice 2.0 :)


Sep 5
@ktsiknos-brainchip
ktsiknos-brainchip
2.4.0-doc-1
cb33735
Upgrade to QuantizeML 0.5.3, Akida/CNN2SNN 2.4.0 and Akida models 1.2.0
Latest


Update QuantizeML to version 0.5.3

  • "quantize" (both method and CLI) will now also perform calibration and cross-layer equalization
  • Changed default quantization scheme to 8 bits (from 4) for both weights and activations

Update Akida and CNN2SNN to version 2.4.0

New features​

  • [Akida] Updated compatibility with python 3.11, dropped support for python 3.7
  • [Akida] Support for unbounded ReLU activation by default
  • [Akida] C++ helper added on CLI to allow testing Akida engine from a host PC
  • [Akida] Prevent user from mixing V1 and V2 Layers
  • [Akida] Add fixtures for the DepthwiseConv2D
  • [Akida] Add AKD1500 virtual device
  • [Akida] Default buffer_bitwidth for all layers is now 32.
  • [Akida] InputConv2D parameters and Stem convolution parameters take the same parameters
  • [Akida] Estimated bit width of variables added to json serialised model
  • [Akida] Added Akida 1500 PCIe driver support
  • [Akida] Shifts are now uint8 instead of uint4
  • [Akida] Bias variables are now int8
  • [Akida] Support of Vision Transformer inference
  • [Akida] Model.predict now supports Akida 2.0 models
  • [Akida] Add an Akida 2.0 ExtractToken layer
  • [Akida] Add an Akida 2.0 Conv2D layer
  • [Akida] Add an Akida 2.0 Dense1D layer
  • [Akida] Add an Akida 2.0 DepthwiseConv2D layer
  • [Akida] Add an Akida 2.0 DepthwiseConv2DTranspose layer
  • [Akida] Add an Akida Dequantizer layer
  • [Akida] Support the conversion of QuantizeML CNN models into Akida 1.0 models
  • [Akida] Support the conversion of QuantizeML CNN models into Akida 2.0 models
  • [Akida] Support Dequantizer and Softmax on conversion of a QuantizeML model
  • [Akida] Model metrics now include configuration clocks
  • [Akida] Pretty-print serialized JSON model
  • [Akida] Include AKD1000 tests when deploying engine
  • [Akida/infra] Add first official ADK1500 PCIe driver support
  • [CNN2SNN] Updated dependency to QuantizeML 0.5.0
  • [CNN2SNN] Updated compatibility with tensorflow 2.12
  • [CNN2SNN] Provide a better solution to match the block pattern with the right conversion function
  • [CNN2SNN] Implement DenseBlockConverterVX
  • [CNN2SNN] GAP output quantizer can be signed
  • [CNN2SNN] removed input_is_image from convert API, now deduced by input channels

Bug fixes:​

  • [Akida] Fixed wrong buffer size in update_learn_mem, leading to handling of bigger buffers than required
  • [Akida] Fixed issue in matmul operation leading to an overflow in corner cases
  • [Akida] Akida models could not be created by a list of layers starting from InputConv2D
  • [Akida] Increasing batch size between two forward did not work
  • [Akida] Fix variables shape check failure
  • [engine] Optimize output potentials parsing
  • [CNN2SNN] Fixed conversion issue when converting QuantizeML model with Reshape + Dense
  • [CNN2SNN] Convert with input_is_image=False raises an exception if the first layer is a Stem or InputConv2D
Note that version 2.3.7 is the last Akida and CNN2SNN drop supporting Python 3.7 (EOL end of June 2023).

Update Akida models to 1.2.0

  • Updated CNN2SNN minimal required version to 2.4.0 and QuantizeML to 0.5.2
  • Pruned the zoo from several models: Imagenette, cats_vs_dogs, melanoma classification, both occular disease, ECG classification, CWRU fault detection, VGG, face verification
  • Added load_model/save_models utils
  • Added a 'fused' option to separable layer block
  • Added a helper to unfuse SeparableConvolutional2D layers
  • Added a 'post_relu_gap' option to layer blocks
  • Stride 2 is now the default for MobileNet models
  • Training scripts will now always save the model after tuning/calibration/rescaling
  • Reworked GXNOR/MNIST pipeline to get rid of distillation
  • Removed the renaming module
  • Data server with pretrained models reorganized in preparation for Akida 2.0 models
  • Legacy 1.0 models have been updated towards 2.0, providing both a compatible architecture and a pretrained model
  • 2.0 models now also come with a pretrained 8bit helper (ViT, DeiT, CenterNet, AkidaNet18 and AkidaUNet)
  • ReLU max value is now configurable in layer_blocks module
  • It is now possible to build ‘unfused’ separable layer blocks
  • Legacy quantization parameters removed from model creation APIs
  • Added an extract.py module that allows samples extraction for model calibration
  • Dropped pruning tools support
  • Added Conv3D blocks

Bug fixes:​

  • Removed duplicate DVS builders in create CLI
  • Silenced unexpected verbosity in detection models evaluation pipeline

Known issues:​

  • Pretrained helpers will fail downloading models on Windows
  • Edge models are not available for 2.0 yet

Documentation update

  • Large rework of the documentation to integrate changes for 2.0
  • Added QuantizeML user guide, reference API and examples
  • Introduced a segmentation example
  • Introduced a vision transformer example
  • Introduce a tutorial to upgrade 1.0 to 2.0
  • Updated zoo performance page with 2.0 models
  • Aligned overall theme with Brainchip website
  • Fixed a menu display issue in the example section
Don't know if all vision transformer models include, presume so?

We have seen "ViT" from BRN in 2.0 and I noticed in the GitHub update...DeiT.

Wondered what that was.

  • 2.0 models now also come with a pretrained 8bit helper (ViT, DeiT, CenterNet, AkidaNet18 and AkidaUNet)
Snip from Medium explaining and looks pretty handy re training data and time taken. Nice to see we on to it off the bat imo.

  • Prior Vision Transformer, ViT, needs to be pre-trained with hundreds of millions of images using external data. ViT does not generalize well when trained on insufficient amounts of data.
  • Data-Efficient Image Transformer, DeiT, is proposed. While the architecture is mostly the same as ViT, it is trained on ImageNet only using a single computer in less than 3 days, with no external data.

 
  • Like
  • Fire
  • Love
Reactions: 30 users

IloveLamp

Top 20
Last edited:
  • Like
  • Fire
  • Love
Reactions: 33 users
Thought I'd check in on Numem and see if any updates. They closed out Ph I earlier this year and waiting to see, once Ames done their assessment etc, whether we move to a Ph II.

Nothing just yet.


1646847609588.jpg


IMG_20231022_195334.jpg
 
  • Like
  • Fire
  • Love
Reactions: 31 users

Galaxycar

Regular
On a upbeat note on brain hips website both the shuttle PC and the Raspberry PI are sold out, now question is how many were originally made at least we will have at least 10k in the next 4c yahoooooo!
 

Diogenese

Top 20
This emphasizes the significance of the announcement that Akida was compatible across the range of ARM processors.

My interpretation is that, basically the hard work has been done in designing the integration of Akida IP into all ARM processor IP there are "ready-made" circuit designs which incorporate Akida with all ARM processors which can be ordered virtually off-the-shelf. This does not mean that Akida will be in all ARM processors, but it means that, if Akida's functionality is needed in the end product, the work of integrating Akida IP into the AM IP has already been done.
 
  • Like
  • Fire
  • Love
Reactions: 89 users

Gies

Regular
1697979798803.png
 
  • Like
  • Fire
  • Love
Reactions: 33 users

jtardif999

Regular

WHAT IS BRAINCHIP USED FOR?​

What is Brainchip used for?

Understanding the Applications of Brainchip: Revolutionizing Artificial Intelligence​

In recent years, the field of artificial intelligence (AI) has witnessed remarkable advancements, pushing the boundaries of what was once thought possible. One such groundbreaking technology that has emerged is Brainchip, a neuromorphic computing platform that mimics the functioning of the human brain. With its unique architecture and capabilities, Brainchip is being utilized in a multitude of applications, revolutionizing various industries.
At its core, Brainchip is designed to process vast amounts of data in real-time, enabling rapid decision-making and pattern recognition. This innovative technology utilizes spiking neural networks (SNNs), which are inspired by the way neurons communicate in the human brain. By leveraging SNNs, Brainchip can efficiently process and analyze complex data sets, making it ideal for applications that require high-speed and low-power processing.

One of the primary applications of Brainchip lies in the field of surveillance and security. Traditional video surveillance systems often struggle to analyze and interpret large volumes of video footage in real-time. However, Brainchip’s advanced capabilities allow it to process video streams in real-time, detecting and identifying objects, faces, and even abnormal behavior. This technology has the potential to revolutionize the way security systems operate, enhancing public safety and reducing response times.
Another significant application of Brainchip is in the field of autonomous vehicles. Self-driving cars rely heavily on AI algorithms to navigate and make split-second decisions. Brainchip’s ability to process data in real-time and recognize patterns makes it an ideal solution for autonomous vehicles. By leveraging Brainchip’s capabilities, self-driving cars can analyze sensor data, detect obstacles, and make informed decisions, ultimately improving safety and efficiency on the roads.
Furthermore, Brainchip is also being utilized in the healthcare industry. Medical professionals are constantly faced with vast amounts of patient data that need to be analyzed accurately and efficiently. Brainchip’s high-speed processing and pattern recognition capabilities enable healthcare providers to quickly analyze medical images, detect anomalies, and diagnose diseases. This technology has the potential to revolutionize medical diagnostics, leading to faster and more accurate diagnoses, ultimately saving lives.
It is important to note that Brainchip is not limited to these applications alone. Its versatility and adaptability make it suitable for a wide range of industries, including robotics, industrial automation, and even gaming. As the technology continues to evolve, we can expect to see Brainchip being integrated into various sectors, transforming the way we live and work.

In conclusion, Brainchip is a revolutionary technology that is transforming the field of artificial intelligence. With its ability to process vast amounts of data in real-time and recognize patterns, Brainchip is being utilized in various applications, including surveillance and security, autonomous vehicles, healthcare, and more. As this technology continues to advance, it holds the potential to reshape industries and improve our daily lives in ways we never thought possible.
Sources:
– “Brainchip: The World’s First Neuromorphic Computing Platform” – Brainchip Holdings Ltd.
– “Brainchip Technology: A New Era of AI” – Analytics Insight
– “How Brainchip Works: The Future of AI” – TechRadar
To me unfortunately this reeks of being composed by generative AI 🙄
 
  • Like
  • Thinking
Reactions: 8 users

Tezza

Regular
Hoping for a gobsmaking 4c! If not I am ready to pounce on what I believe will become a ridiculous price.
 
  • Like
  • Love
  • Thinking
Reactions: 18 users

HopalongPetrovski

I'm Spartacus!
Hoping for a gobsmaking 4c! If not I am ready to pounce on what I believe will become a ridiculous price.
Yeah, no doubt a few of us have been keeping some powder dry for this potentiality.
GLTAH
 
  • Like
  • Love
  • Thinking
Reactions: 14 users

Xray1

Regular
Yeah, no doubt a few of us have been keeping some powder dry for this potentiality.
GLTAH

From the last 4C:

" Cash inflow from customers in the current quarter of $0.83M was higher than the prior quarter (US$0.04M)."

Now just a wait and see situation to see how " LUMPY " things can get.
 
  • Like
Reactions: 5 users

toasty

Regular
Interesting buy/sell ratio this morning........... ;)
 
  • Like
Reactions: 1 users
Top Bottom